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A bstrac t 

This paper gives the Poynting vector of  a plane electromagnetic wave diffracted by the 
gravitational field of a large spherical body (large compared to its Schwarzschild radius) 
and shows in detail how this body works as a gravitational lens. The most interesting 
results are (1) an extreme amplification of intensity near to the axis of  symmetry in the 
far field behind the body, with a factor of  10 times the Schwarzschild radius divided by 
the wavelength of the light, and (2) the appearance of double inkages, differing in shape 
and position from the predictions of geometrical optics. 

1. Introduction 

The gravitational lens effect of a spherical star (galaxy . . . .  ) has been investi- 
gated by several authors (Refsdal, 1965; Liebes, 1964; Bourassa et aL, 1973), 
but only in the framework of geometrical optics. The disadvantage of all these 
papers is the fact that all interesting things happen in the region of interference 
of two rays, where geometrical optics fails ~to be valid or at least some of its 
predictions rest on a wavering foundation. 

In this paper we shall deal with one important part of the wave-theoretical 
treatment of the gravitational lens, namely, the scattering of a plane electro- 
magnetic wave by a spherical star. In the language of  geometrical optics, we shall 
consider the image of a very distant star. The Schwarzschild radius of the gravita- 
tional lens is assumed to be small compared to its radius but large compared to 
the (flat space) wavelength of the incident wave. 

We start with a short account of notation and Maxwell's equations for the 
particular symmetry of a plane wave in a spherical background metric. The 
formulas are given without proof; the details can be found in our first paper 
(Herr & Stephani, 1975). We then, in Sec. 3, derive the important formula 
(3.9) for the diffraction field, which is the starting point for all further con- 
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siderations. Those interested only in the main results should look at Fig. 3. 
Note that outside the region of  interference geometrical optics holds and in- 
side this region (7.7) is true, and should start reading at Sec. 8. 

2. The General Solution of  Maxwell's Equations with the Symmetry o f  a 
Plane Wave 

In the background of  the Schwarzschild metric 

ds z = r2(dO 2 + sinZOd~02) + [(r - 1)/r] (dv 2 - dt 2) 
(2.1) 

v = r + ln(r - 1) 

the general solution of  Maxwell's equations, which corresponds to a mono- 
chromatic wave with the symmetry of  a plane wave (Ex = Hy, all other field 
components being zero), can be given in terms of  a single function P: 

P(r, O) = ~ DnRn(r)Pln(cos O) (2.2) 
n = l  

The D n are arbitrary constants, the Pn 1 are the Legendre functions, and the 
Rn(r) are solutions o f  the radial equation 

d2Rn [ n(n + l ) ( r -  l)] 
dv 2 + ¢0 z -- r3 R n = 0 (2 .3)  

To get the components of  the electromagnetic field, one simply has to 
construct 

a = - sin 0 OOsin 0 30 (sin OP) 

O ~  8P /3 = sin ~-~v+iooP (2.4) 

6 = - ico sin 0 
30 by 

and to insert the result into 

Fo~ = a sin hoe -it°t,  For = 8 c°S ~° e-iCot 
sin 0 

cos ~o e-icot (2 .5)  
F~t = ~ sin ~o e- i¢o t ,  F o t  = ~ sin---~ 

r -- 1 cos ~0 e_iCot 
F~v = fi sin ~0 e -it°t, Fvt = c~ r3 sin 0 

The coordinates are defined so that distances are measured in units of  Schwarz- 
schild radius and so that co is the ratio of  the Schwarzschild radius divided by 
the (flat space) wavelength. 
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3. General Expressions f o r  the Rigorous and Approximat ive  Solutions o f  the  
Diffraction Problem 

We flow have to adjust the general solution (2.2) to our purposes, i.e., we 
have to impose boundary conditions. As shown in our preceding paper, the 
boundary condition at radial infinity that ensures an incoming plane wave 
gives the amplitudes D n 

Dn = ( -1 )n  2n + l e i c O ( x / 2 _  ln2) (3.1) 
26o z n(n + 1) 

This makes sense only in combination with the specific choice that the radial 
functions R n contain an incoming part R (in) which for large v is approximately 
e -i ¢ov . 

lJ, 

Figure l -The incident plane wave. 

The second boundary condition concerns the field at or near the surface of  
the star. We demand that the surface completely absorb the incident wave-  
that is, that no reflection and no coherent reemission take place. It is rather 
easy to express this condition in terms of  the radial functions Rn.  The differen- 
tial equation (2.3) as well as Fig. 2 tells us that an incoming radial wave will 

r-1 
n(n + 1) -~- 

m 

\ 
, - . . . . _ _ _  
I 

I 1 
1 R 

n < wR 

n > w R  

r 

Figure 2-Boundary condition at the surface of the star. 

be completely reflected by the "potential" n(n + 1)(r - 1)/r 3 i fn  is large, and 
will reach the surface of the star only for n < N ,  

N ~ (.oR (3.2) 



48 E. HERLT AND H. STEPHANI 

Splitting the radial functions into their ingoing and outgoing parts, we see that 
for n > N  the radial functions Rn are not affected by the star at all; so we need 
to consider only the Rn of  the Black Hole case. For n < N  no outgoing wave 
exists because of  the complete absorption, so we have to take the ingoing part 
of  Rn only. 

We conclude that 

P = n ~  "(-1)n___ 260 2 n(n2n+~) ei~O/2-1n2)Rn(r)Pl(c°sO)+ 

~ (--1) n 2n+~)eitOO/2-1n2 ) out 1 -- Rn (r)Pn(cOs 0) (3.3) 
n= 1 2602 n(n + 

is the general expression for the exact solution of  the diffraction problem. 
We now introduce some approximations which simplify this general expres- 

sion and facilitate computations. Instead o f  the radial functions Rn(r) we take 
o 

the functions Rn(r) defined by* 

o 2(--i) n + lr3 eiw(ln 2w - l/2)eianF n [-60, co(r - ½)] Rn(r) : (r ~ 5 ~--_-~) 
(3.4) 

o n = arg P (1 + n - iw) 

where the Fn are solutions of  the differential equation 

d2Fn[(__+ + 2 ) n ( n + l ) ]  
dr 2 602 1 ~_~  - ( r - ½ ) 2  JFn =0 (3.5) 

This enables us to express the first part of (3.3) in terms of  the confluent 
hypergeometric function F[a Ic Ix], the solution of  

d2F dF aF= 0 (3.6) 

which is regular at x = 0. As shown in our previous paper, the equation 

o o 
P: E o) DnRn(r)pln(cOs 

n = l  

e in~4 r 3 1 -- cos Oeico(r + 
= -(27r6o)1/2 r 2 1]2)  

60 - 1 sin 0 

(F[1 - i60121 -i60(r - ½)(1 - cos 0)1 - Y[1 - i6012 t -2i60(r - ½)1 ) 

(3.7) 

holds in consequence of  (3.3) and (3.4). 
The second approximation concerns the outgoing parts of  the radial func- 

o 
tions R , .  Using the well-known properties of  F ,  (Messiah, 1961) and the 

0 
* Some properties of R n and Rn are listed in Appendix A. 
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Wentzel-Kramers-Brillouin (WKB) method to investigate (3.5), we get for 
co>~l 

/~out  ~ _ ( _ l ) n e - i W ( 1  - 21n2Va)ei2OneiWrneiw[r+ ln(r  - 1/2)1 

o n = co - coin[co(1 +a2)  1/2] - a c o  arccot a 

T n = ( r  2 + 2 r - a 2 )  l / 2 - r + l n  1+  1 + 
r r -  ~ ]  J (3.8) 

I - a 2 / r  1 
- a  arcsin (~ -a32~/2  - 1  - l n 2  + a  arcsin (1 +a2) 112 

a 2 = n(n + 1)/co 2 

Putting all the pieces together, we finally obtain 
o 1 

p = p - p  

_ (2rrco)l/2eiTr/4 r 3 1 - -  c o s  Oeico(r+l /2  ) 

co r 2 - 1 sin 0 

x {F[1 - ico [2 i - ico(r  - ½)(1 -- cos O)] - F[1 - ioo 12l-2iw(r - ½)] } 

oco~ (2n + 1)pl(cos O)eico(ln 2 _ 1/2 + 21nw)ei2a n 

+ ~ 2co2n(n + 1) 
n = l  

X e iWrne  i°°[ r + ln(r  - 1/2)] ( 3 . 9 )  

Because this formula is the starting point for all further investigations, we 
repeat its meaning and make some remarks concerning the physical significance 
of  our approximations. P represents the electromagnetic field of  a plane wave 
diffracted by a star. The radius R of this star should be large (/2 >> 1), so that 

0 
the rigorous radial functions Rn can be replaced by the Rn, and the frequency 
of  the wave should be large (co >> 1), so that the WKB method makes sense in 

o 
the evaluation of  the R °ut. Furthermore (3.8) and (3.9) require r > R, so the 
observer should be outside the star. Generally speaking, the approximation is 
the better the farther we go away from the star. 

1 
4. Evaluation o f  the Sum P and Interpretation o f  the Result in Terms o f  

Geometrical Optics 

For the discussion of  the electromagnetic field we need more information 
about 

coR 
1 ~-" (2n + 1)Phi(cos 0)e/CO(_1/2 + 

P = -  ~ 2coRn(n + 1) 
ln2 + 21neO) ei2an 

n = t (4.1) 
X eiC°Zne iw[ r + I n ( r -  1/2)] 
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We get this information by substituting for P~(cos O) their asymptotic 
representations 

n {eil(n+ll2)O_a~r/4l 
pI(cos O) = (2n nsin O) 1/z 

+ e-i[(n +1/2)0 - 3n/41 }, nsin 0 />  1 

o r  

(4.2) 

pl(cos 0) = cos 0/2 J t  [(2n + 1) sin 0/2],  nsin 0 ~< 1 (4.3) 

replacing the sum over n by an integral and evaluating this integral by the 
method of stationary phase (see Appendix B). 

Formulas (4.1) and (4.2) show that the n-dependent part of the phase has 
the structure 

S+(n) = + [(n + ½)0 - 37r/41 + 20 n + COrn (4.4) 

The points of  stationary phase prove to be 

_+sinO = 1 -  +1 + l+- - r  -~] ]' a2 =n(n+l)/CO 2 (4.5) 

1 
P will give contributions only if these points are within the interval 0 ~< 0 ~< 7r. 
1 <<.n <~ COR. Taking for a the maximum value R, we see that 

+ sin 0 = 2/R - R/r (4.6) 
t 

gives us the boundary of those regions of  space which are influenced by P. 
This equation admits a simple geometrical and physical interpretation (see 
Fig. 3). Geometrical optics in the usual linear approximation tells us that rays 
just grazing the star are given by the equation 

1 s in0 ( l + c o s 0 )  2 s in0 2 R 2 
... . . . . . . . . .  r R ÷ 2R 2 " ~ - - + R  R2,-- r~-~- 

(4.7) 
1 s in0  ( l + c o s O )  z s in0 2 R 2 

r R 2 ~  ~ - -  --R-- * R  5,r~> 2 

R 2 _. 4 

shadow region of 
geometrical optics 

Figure 3-The three different regions of space. 

region ot 
interference 
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From this we see that the boundary in question coincides with these grazing 
rays in the forward direction 0 ~< O ~< 7r/2. 

A careful analysis of (4.5) shows us that 
1 

1. In the shadow (no ray is reaching this region) P gives two contri- 
butions due to two different points of stationary phase. 

2. In the region of geometrical optics (one ray through each point) 
1 
Phas one point of stationary phase. 1 

3. In the region of interference (two rays through each point) P gives 
no contributions at all. 

This simple result may help to strengthen the reader's confidence in the 
validity of our approximation procedure. 

5. The Shadow 
People looking for light in the shadow will be disappointed: the two parts 

o 1 
of P-P and P-cancel out: there is no electromagnetic field at all. Because of 
this rather poor result it does not pay to present the calculations; they run 
along the same lines as those of Sec. 6. 

Believing in wave optics, one would expect a smooth transition between 
light and shadow and at least a weak field inside the region of shadow. These 
effects are not covered by our approximations; they need a better asymptotic 
representation of the functions involved, a refinement of the method of 
stationary phase, and consideration of terms in co - t  . 

o 1 
We add a remark concerning0the physical meaning of P and P, respectively, 

which will be confirmed later: P represents the light which would be found in 
the absence of the star (only a point singularity or a Black Hole is a cause of 
diffraction); it consists of two parts corresponding to the two rays crossing 

1 
each point. P represents the light propagating along the very rays that reach 
the star and are absorbed. 

6. The region of Geometrical Optics 
To simplify calculations, from now on we consider the far field r >> 1 only. 

One has to be careful with this approximation and should use it only in the 
final results and not in the intermediate steps of derivation. 

By means of the asymptotic representation of the confluent hypergeometric 
functions,* which is valid for large co in the region off the axis 0 = 0, formula 
(3.9) gives 

0 eit°[(r-1/2)(l+c°sO)/2+l][ r ( l - c o s O ) ] 1 / 4 / - i ~ N  ) 

P =  co2 sin 0 r(1---  . . . . .  e COS O) + 4 J  1 +ieie°N 

l 1 -~ COS Oei~O [e_iw(r + 1/2 + ln2r) + iei~O(r + 1/2 + ln2r)] (6.1) 
2co z sin 0 

* Some properties of the confluent hypergeometric functions are compiled in Appendix C. 
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N :  ½{(r - ½)(1 - cos 0 ) [ ( r  - ½)(1 - cos 0 )  + 41 )1/2 
+ ln(1 + ½(r - -~)(1 - cos O) + ½((r  - ½)(1 - cos 0 ) [ ( r  - ½) (6.2)  

x (1 - cos O) + 4] }1/2) 
1 

The second par t  of  the field, P, has on ly  one po in t  of  s ta t ionary  phase,  
which is given b y  

O= a [ _ a 2  2 _ (6.3) sin l + a Z [  r + 1 +  l + - - r  

6o -1 ~<a ~<R 

Since for  large r e i ther  a 2 >~ 1 or a 2 ~ r holds,  (6 .3)  can be replaced  e i ther  by  

a = cot  ½0, a 2 ~ r (6.4)  

or by  

2/a - a/r = O, a 2 >> 1, 0 ~ 1 (6.5)  

We will demons t r a t e  the way o f  reasoning for the first case (6.4).  F r o m  (4 .1 )  
(4.2),  and (4 .4)  i t  fol lows tha t  at the  po in t  o f  s ta t ionary  phase the to ta l  phase 
and its second derivat ive are 

So = co[-½ + ln2 + 21nco + r + ln(r  - 1) + rn]  + 2o n + (n + ½)0 - 37r/4 

= co[~ + r + lnr(1 - cos 0)]  - 3zr/4 (6.6)  

d2So _ 2 sin2 __0 
dn 2 co 2 

so tha t  app l ica t ion  o f  (B3) yields 

1 i ....... e ice[  r + l n r ( 1  - cos O) + 3/21 (6 .7)  
co 2 sin 0 

The app rox ima t io n  r(1 - cos 0 )  >> 4 - w h i c h  corresponds  to  (6 .4 ) - s imp l i f i e s  
(6.1)  to  

o 1 0 (ei~[(r- 1/2)  cos  0 - l n r ( 1  - cos 0) ]  
P = co 2 sin 

+ ieiW[r+ l n r ( 1  - cos O) + 3 ]2 ]  ) 

1 1 - - C O S O  io~ -iw(r+l/2+ln2r) + i e i W ( r + l / 2 + l n 2 r ) )  
- 2w 2 sin b e (e 

(6.8)  
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The total field is accordingly given by 

0 1 
p = p - p  

_ 1 e iC O[ ( r -  1/2) cos 0 - l n r ( 1  - cos 0)]  

co 2 sin 0 (6.9) 

t 1 - -  COS 0 e iCO(e_iC~(  r + 1[2 + l n 2 r )  + i e i ~ ( r  + 1/2 + l n Z r ) )  

2 ~  2 sin 0 

It is rather easy to understand the physical meaning of  this result. Owing to 
(2.4) and (2.5) only the first term will give non-negligible contributions to the 
electromagnetic field tensor, because in the second term the factor co -2 will 
not be compensated (no second derivative with respect to r). One need not 
discuss in detail the electromagnetic field arising from the first term: the 
surfaces 

W(r, O) = ( r -  ½) cos 0 - lm~(1 - cos0)  = const (6.10) 

of  constant phase coincide with the surfaces orthogonal to the light rays, and 
in the short-wavelength approximation ~ >> 1 the Poynting vector is tangential 
to these rays. So the notation "region of  geometrical optics" is justified now. 

Surely nobody would have expected a different result. But it may convince 
the reader once more that in spite of  the approximations involved, the results 
of  this section and -wha t  is far more i m por t an t -o f  the following sections are 
reasonable. 

7. The Poynting Vector in the Region o f  Interference 
1 

In the region of  interference 2r >I R 2, RO ~< 2, the sum P gives no contribu- 
tion and the electromagnetic field can be derived totally from 

P = _ei~/4 (2zrw)l/2r 3 1 - cos 0 eiW( r + 1/2) 
(r 2 -- 1)6o sin 0 

x {F[ t  - icol21-ico(r - ½)(1 - cos 0)] - F[1 - ico121-2i~(r  - ½] } 

(7.1) 

It can be shown that the second term is negligible. The electromagnetic 
field and the Poynting vector due to it are an order of  magnitude (factor co -1/2) 
smaller than those originating from the first term. Roughly speaking, the second 
term serves to avoid a singularity of  P near the axis 0 = lr and is important only 
near this axis. 

We now are left with the problem of  deriving the Poynting vector of  the 
field 

P = _ei~/4 (27r~)l/2r3 1 - cos 0 eiW( r + 1/2) F(2) (7.2) 
co(r 2 -- 1) sin 0 
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Using the notations 

F(1)  = F[1 - / w i l l  - ioo(r - ½X1 - cos 0)] 
(7.3) 

f ( 2 )  = f [ 1  - i c o l 2 f -  i~o(r - 1X1 - cos 0)] 

a straightforward calculation yields (compare Sec. 2) for r >> 1, 0 ~ 1 

oe = - e  i(tor + lr/4)(2rrco)l/2r2 02 [ iF(l)  + ooF(2)] 

+ "~ rO + + -- + F(2) 
4cor 2 (7.4) 

+ -~-ir--+--4 4cot F(2)  

For the discussion of  the results it is convenient to introduce a coordinate 
system of  cylindrical shape (connected with isotropic coordinates) instead of  
the Schwarzschild coordinates. In the far field r >> t we do this by 

F = r - ½ ,  z = F c o s O ,  p = F s i n O  

F+ 1 
ds2 = .' [dp2 + fi2d~oZ + dz2] ~ 2 

r - F+ 1 dt  

(7.5) 

In this coordinate system the Poynting vector has the components 

Sz = - r - ~  Re[ge-i~°t] Re a + e - i~ t  

So=r2-- ~ ~ f i e  - i ~ t  

S~=0 
Time averaging and use of  (7.4) gives us the final result 

Sz = no~F(1)F(1) + 7rcoF(2)F(2) 16 4 

0 2 + 0 2 + 
-rroa -~-(1 - i~o)F(1)F(2) - rreo --~ (1 + ico)F(1)F(2) 

(7.6) 
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ncoO + + ncoos F( )F(--2 ÷ 2 )  
- 2,. FO )F(1) 16 

+ rrco0 co + 8r-- 7 + ~ -  F(1)F(2) (7.7) 

[ + 
+ ~rco0 - co 2 8 7  + F(1)F(2) 

S~,=0 

Here Sz, St,, and S~o are the time averaged components of the Poynting vector 
in the coordinate system (7.5), F(1) and F(2) are the confluent hypergeometric 
functions defined by (7.3), and the + denotes complex conjugation. 

All properties of  the diffraction field are hidden in this formula (7.7), and 
we now have to extract them. This is a little bit complicated, because too 
many parameters enter into the structure of this interference pattern: the 
radial distance r ~ z, the distance p = rO from the axis 0 = O, the frequency co, 
and, if we ask for the visual image of the star, the aperture of  our telescope. 
We therefore confine ourselves to the most interesting results. The formulas 
given below and in the appendices wilt enable the reader to discuss other details. 

One thing should be mentioned first: for our sun the region of interference 
is outside the planetary system (outside r = 1012 kin). So all possible observations 
concern the effects of more distant stars. 

8. Poynting Vector and the Image o f  the Star 

If  we want to discuss the image of the star as seen by a telescope, we have 
to use physical concepts specific for the telescope and to connect them with 
the components of the Poynting vector given above. 

The intensity dI per unit area 

dS = Sndf" = Szpdpd~ (8.1) 

gives us the brightness of the star, and the deflection angle A defined by 

tan A = -So /S  z (8.2) 

gives us the direction in which the star will be seen. These rather trivial 
relations are sufficient only if the components ffp and Sz do not change too 
much along the aperture of the telescope. As we will see later on, the Poynting 
vector is in fact a rather rapidly oscillating function of the distance p from the 
axis 0 = 0. It can happen, therefore, that the telescope collects contributions 
belonging to different deflection angles A. In that case the intensity per 
deflection angle 

d--A = Sz pd~o =]SzSp-'- - SoSz-'- I pdso, S-'z =---dp, "'" (8.3) 

gives us the image of the star. 



56 E. HERLT AND H. STEPHANI 

Formula (8.3) shows that angles A with an infinite intensity dI/dA may 
occur. Owing to the diffraction of  the wave by the aperture of  the telescope, 
these infinities will be smoothed out, and at these very angles A we will see a 
peak of  intensity. 

9. The Region rO 2 >> 1: Double Images o f  Equal Brightness 

Coming from the region of  geometrical opticss and crossing the border 0 = 
2/R - R/r we enter the region of interference at points where rO 2 >> 1 (p2 >> r) 
holds, at least for large r. Here we can use the asymptotic representations (C5)- 
(C8) and simplify (7.7) to 

 z=½ 
Sp = - (2/p) sin 2 (coN - rr/4) - p/4r 2 (9.1) 

N = p2/4r + 1 + ln(2 + p2/2r) 

We see that the magnitude of  the Poynting vector is 1/2, which is the same 
as in the region of  geometrical optics: the interference does not alter the total 
brightness o f  the star. 

In the neighborhood of  a point ro, Po, O0 the component  Sp behaves like 

= - Po~ + const - 4r-~' ~ = p - Po 
Po 

and the deflection angle 

S_-~ = 2So (9.3) A = - ~ z  

oscillates between A 1 = po/2rg ~ 0 and A2 = 4/,o0 with a period 6p given by 

8p = 2rrr° =---X (9.4) 
Poco Oo 

This period can be small or large compared to the aperture of  the telescope. 

rO 2 >> 1 

I P R2 ~ ~ 2 ~ ' ~  ~. 1 

_  ocalbeam 

Figure 4 - T h e  region of interference and its parts. 
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1. I f  the telescope is small, the deflection angle depends on the position 
of the telescope. This may happen for radio waves scattered by a typical star 
(X = 10 -4 kin, r o = 1016 kin, 00 = 10 -6, 4/p o = 4.10 -1° kin). 

2. I f  the telescope is large, it will give a distribution of  intensity according 
to 

dI roPodpd~o 
d-~ =- 2oJPo X/A(4/O o - ~) (9.5) 

compare Fig. 5. 

d/ 
d~ 

0 4/00 

Figure S-Image of a star as seen by a large telescope. 

An observer will see two stars of  equal brightness, located at A = 0 (no 
deflection) and at A = 4/po,  with a weak bridge in between. 

10. The Region r02 ~ 1: Double Images of Unequal Brightness 

According to (7.7) and (C5)-(C8) the components of  the Poynting vector 
are 

1 [ 1  8c°82@°N- zr/4)] (l + 8/rt)2)-l/2 
Sz = 7 + rO 2 

2s in2(coN-  7r/4) 0 1 + 8cos2(c~N-  7r/4)/rO 2 
So = - r O ( 1  +8/r02) 1/2 -4rr (1 +8/r02) 1/2 (10.1) 

N = ¼r02(1 + 8/r02) 1/2 + ln{1 + ¼rO 2 [1 + (1 + 8/rO:) 1/2] } 

Neglecting terms p/2r 2 we get from this 

4 sin2(coN - 7r/4) 
tan/x = -- (10.2) 

p 1 + 8cos2(c~N - 7r/4)/rO 2 

That shows that in this region the magnitude of  the Poynting vector is oscil- 
lating between (1 + 8/r02)1/2/2 and (1 + 8/r02)-1/2/2, while the deflection 
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d/ 
dA 

A 
4/p 

Figure 6-Image of a star as seen by a large telescope, rO 2 ~ 1. 

angle A oscillates between 0 and 4/p, respectively. Taking into account the 
variation of wN, but neglecting variations o f p  elsewhere, the angular distribution 
of  intensity turns out to be 

dI r (1 + 8r/p2) 1/2 pdpd~o 
dA 2 ~ p  (1 + 2rA/p) 2 [ A ( 4 / p -  A)] 1/2 

(10.3) 

An observer will see two stars of  unequal brightness, located at A 1 = 0 and at 
A2 = 4/P, with a ratio of  luminosity 

L1/L 2 = (1 + 8r/p2) 2 = (1 + 8/1"l.~2) 2 (10.4) 

and a weak bridge between both. 

11. The Region r0 2 ~ 1: The Focal Beam of Extreme Intensity 

Near the axis of  symmetry 0 = 0 we get from (7.7) the formulas 

[ 2 r022 ] 
Sz = 7rco Jo(~X/~O) + ~ -  Jl(cox/~O) , rO 2 ~ 1, ~ox/~rrO <. 1 

(11.1) 

zr~O [ j2(~x/~rO ) + rJ~(coV~O)] S"- 2r 

which are valid just at tile axis 0 = 0 ,  and 

v , ~  X/2 (¢oX/~O_4) V~rO + 4X/-2 = - cos 2 

(11.2) 

' o = - ~ r 2 r S i n 2 ( ° ~ x / ~ O - 4 ) - r ~ C O S 2 ( W x / ~ O - 4 )  
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where 

rO 2 < 1, cox/2;O >> 1 

which are valid off the axis 0 = 0 and overlap slightly with (11.1). 

11.1. The Light Intensity in the Focal Beam. The magnitude IS[ ~ 2~z of the 
Poynting vector starts at the axis 0 = 0 with 

171 = lrco for p = 0 (i 1.3) 

decreases slowly (while oscillating) if p increases, becoming 

[SI= x/r~-~ f o r p = • =  ~ = ~ / ~  (11.4) 

and going further down to its mean value 

[S[=½ f o r p > > v ~  ( l l .S)  

in the region of double images. 
Since for a star of about one solar mass the frequency co can have values 

between 104 (radio waves) and 101° (visible light) or even 1014 (T rays), a 
gravitational lens can enlarge the brightness of a star for the same remarkable 
factor. The plane wave is focused into a narrow beam of extreme intensity; 
the radius of this beam is p as given in (11.4). If, owing to a relative motion 
between source, lens, and earth the earth would be hit by this focal beam, an 
observer should see a (short) burst of radiation. 

The components of the Poynting vector and the intensity are oscillating 
with a spatial period 

6p = ~rx/r/coV~ = ~ / ~ X  (11.6) 

Again it depends on r, X, and the aperture of the telescope whether these 
oscillations are observable or not. 

11.2. The Angular Distribution of  Intensity. From (11.2) we get an angular 
distribution of intensity of the shape 

dI (t + tan 2 A)pc/Ac/~0 
- -  ~ ( 1 1 . 7 )  
dA 2cox/~(tan A + p/2r)2~/tma A(4/p - tan A) 

where 

p2 < 2r, p >> v~r/2co 

I t  shows that there are two peaks of intensity, at A 1 = 0 and at A 2 = arctan 
4/p. Near these peaks dI/dA behaves like 

d~ ~ co,,/Z' A~AI"~0 
(ll.S) 

dI ~.. ~ + 16) pdAd~p 
d-A 64COV~ ~ '  A ~  A: 



60 E. HERLT AND H. STEPHAN1 

That means that the intensity near to the second peak A = A z is very small; it 
is smaller the larger A s becomes. So an observer would essentially see one 
star (at A = 0). 

Discussing these formulas one should be aware of  the fact that our approxi- 
mations may be too rough to give the details o f  the intensity near A = 2~ 2. The 
intensity at this angle is one order of  magnitude smaller than that at A = 0, 
and the position A 2 o f  the second peak itself is rather sensitive to small changes 
in the components o f  the Poynting vector. So these quantities may change 
considerably if we take into account terms neglected up to now (terms small 
compared to zrco). 

12. Wave Optics in Comparison with Geometrical Optics 

Geometrical optics, too, predicts a double image of  the star, due to rays passin 
at different sides o f  the gravitational lens. 

A2 
~ ray l \ ~  

2 

Figure 7-The double image due to geometrical optics. 

According to (4.7) the positions of  these point images are given by 

2 4 1 
A I - D I - X / ~  r X / / ~ +  r N / r ~ +  8 

(12.1) 
2 4 1 

A 2 - 
D 2 V' ;  r ~ -  rx/~-2+8 

and their respective luminosities are (Refsdal, 1965) 
L1 = ¼[2 + (1 + 8/r02) 112 + (1 + 8/r02) -U2] 

(12.2) 
L2 = ¼ [ - 2  + (1 + 8/r02) 1/2 + (1 + 8/r02) -112] 

Table I helps to compare these positions with those of  wave optics, the sum 
of  the luminosities L 1 + L~ with the mean value of  2Sz, and the ratio of  L 1/L2 
of  the luminosities with the ratio of  the values o f  dI/dA at A 1 and A 2. Here 
A 1 always denotes the smaller deflection angle, A 2 the larger one. 

Three points are remarkable: 
1. There is a complete agreement concerning the total intensity o f  

the image of  the star. 
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TABLE 1. Predictions of wave optics (W) and geometrical optics (G) 
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Region A 1 A2 

L1 +L 2 L1/L2 
or or 

rO 2 >> 1 

rO 2 ~ i 

rO 2 .~ 1 

cox/~O >> 1 

G 2/rO 

W o/2r 2 ~ 0 

4 
G 

+ 8r+rO 

W 0 

W 0 

4/rO 1 1 

- 4  1 + 4~tO 2 ~ + 1 + 4/rO 2 

~]Tz- fZ+Sr-rO ~ - ~ + l + 4 / r O  2 

1 + 4~tO 2 
4[rO ~ (1 + 8/r02) z 

2 o,/7 1 

x/~ 64w 
4/rO Ox/7 r O 3 x / ~  + 16 

2. There is a total disagreement concerning the relative intensity of  the 
double images. 

3. There is a total disagreement concerning the position o f  the two 
images of  the star; only for 1"02 >> 1 the wave optical value o f  As 
agrees with the A 1 o f  geometrical optics. 

Near the axis 0 = 0 geometrical optics fails to be applicable at all, whereas 
wave optics gives finite values for all physical quantities. 

13. Concluding Rem a r ks  

The most interesting question is, of  course, whether some of  the predictions 
of  wave optics of  the gravitational lens are observable-not  anywhere in the 
universe, but on our earth. 

As the deflection angle A 2 = 4//) may have values considerably larger than the 
usual values occurring in the light deflection by the sun, 2x 2 may have measur- 
able magnitude. But unfortunately the corresponding intensity is smaller the 
larger A z becomes. 

More promising is the appearance of  the focal beam of  extreme intensity, 
as discussed in Sec. 1 I . I .  I f  the earth happens to pass through this focal beam, 
a sudden burst o f  radiation should be seen. The condition to be fulfilled is that 
the earth approach the axis O = 0 (the line between two stars, one acting as 
source, the other one acting as lens) up to a distance 

compare (11.4) and Fig. 8. 
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earth 

X rs X r l ~ ~- 

source lens g 

Figure 8-Condi t ion  for the earth passing the focal beam. 

Moreover, because our calculations were made for an incident plane wave, 
the distance between source and lens should be large compared to the lens- 
earth distance (r s >> r). Refsdal (1965) gave an estimate of the number of passage 
per year, which is of the order unity-but we need to know first when and 
where these passages occur to have a chance for observation. 

There may be a greater chance of observation for the lens effect by a double 
star system, one of these stars (the lens) being a neutron star or a black hole. 
But the plane wave approximation used in this paper fails to be applicable in 
that case. Our future work will be devoted to these problems. 

o 
Appendix A:  The Radial Functions Rn and R n 

The defining differential equations are 

d2Rn 1 dRn [ ~Zr2 n(n + 1)] 
dr 2 + r ( r - 1 )  dr +[( r - - -O 2 r ( r -  1)] R n = 0  

and 

(A1) 

- - [  0 r~_~) n ( n + l ) ]  d2Fn + J + Fn=O 
dr 2 (--~-_-~'~ ] 

0 
R n = 2(-i)n+lr2(r - 1)-2e i~(ln2~ - 1/2)eianFn (A2) 

o n = arg F (1 + n - i ~ )  
o 

For large r the differential equations for R n and Rn differ only in terms of 
higher order in r -1 (indicated by • " "); the following equation holds for both 
of them: 

dr---T+ + . . .  + a~ 2 l + - - + - . - r  r2 l + - - + . . . r  R n = O  

(a3) 

Calling "ingoing" the part which asymptotically for large r is e - i eo ( r+  lnr) and 
"outgoing" the part proportional to ei~°( r + lnr) one gets 

R~ n .~ exp { - i w [ r  + ln(r - 1) + n(n + l)/2w2r +" " "] } 
0. 

R~n n ~ exp ( - i ~ [ r  + ln(r - 1) + n(n + 1)/2~o2r + 1/r +" • "] } (A4) 
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n ~cor, r>> 1 

ROUt ~ _  (_ l )neiW7"n exp[_2iw2(7/8 + 157r/32)/n] 
gt 

/~out .~ _ (_l)neiwTnei~O(1/r-l/n) (A5) 
n 

Tn = r + ln(r - I) + n(n + 1)/2coZr - 1 + 2tn2co +. -- 

O 
All this shows that for large r and n the Rn are a good approximation of the 
Rn. 

Appendix B: The Method o f  Stationary Phase 

If the phase S(n) in an integral 

I = fA(n)eiS(n)dn, n real (B1) 

is a rapidly chang!ng function of n, and A(n) changes only slowly, then the 
contributions of the integrand will cancel out with the exception of  the points 
n o of stationary phase. For these points 

dS/dn = O, n = n o (B2) 

holds. The integral can be replaced in a rather good approximation by 

+~/S 2--~-~ (B3) I = ~A(no)e iS(no)e  i7r/4 , ,(no) 

where S" denotes the second derivative of S with respect to n and the sum has 
to be extended over all points of stationary phase lying within the range of 
integration. 

Appendix C: Confluent Hypergeometrie Functions 

F[a [c Ix] is defined as the regular solution of 

dZF " - x )  dF aF =0 (Cl) 
X~Zx2+ ~c dx 

It fulfills the following relations: 

F[alelx] = eX F[c - ale I-x] (C2) 
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d F[alclx] a F [ a + l t c + l l x ]  
dx c 

a 
=-- (F[a + l lclx] - F[a[clx] ) 

X 

1--c  
- {F[alclx] - f [ a l e  - l lx]} 

X 
(c3) 

The functions used in our paper, 

F(1) = F[1 - iw[1 [-iw(r - 3)(1 - cos O)] 
(C4) 

F(2) = F[1 - &,.~121-ieo(r - ½)(1 - cos 0)] 

have the asymptotic representations 

e-i(~/2)Xeilr/4{ X t l / 4 [ e - i ~ N ( l + ~ ) _  2ie it°N ] 
F ( 1 ) :  ~ \ ~ - ~ /  x/X(x/X + ~ ]  

(cs) e-i(w/2)Xe-i~r/4 ( X  ]1/4 (e-iWN + ie iwN) 
(2frco)l/2X \X + 4] 

F ( 2 )  = - 

where 

N = ½ [X(X + 4)] 1/2 + ln( 1 + ½X + ½ [X(X + 4)] 1/2 } 

x = ( r  - ½ ) ( a  - c o s  o) 

valid for co >> 1 and 0 > 0, and the asymptotic representations by means of  
Bessel functions 

F(1)  = e -iwx/2 [J0(26oV~) - ( i /2)x/XJl(ZcoV~)] 

F(2) = e-i~°x/2Ja(2~ox/X)/wx/X (C6) 

valid for co >> 1 near 0 = 0 (X = r02/2). 
The products o f  these functions which enter into the components of the 

Poynting vector are 

F ( 1 ) F ( a )  = \2-~1 2w--~ 1 + cos 2 c o N -  

F ( Z ) F ( 2 )  = \X  + 4] X~Tr~ 3 

F(1)F(2)  = i sin2(coN - 7r/4) cos2coN 
rrco 2 [X(X + 4)] 1/2 27rco2X 
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and 
+ 

F(1)F(1)  = J2(coN) + ~N2J12 (coN) 
+ 

F(2)F(2)  = (4/coZN:)J~(coN), N = 2x/-X 
+ 

F(1)F(2)  = (i/2co)J~(coN) + (2/coN)Jo(coN)J 1(coN) 

(cs) 

Note Added in Proof 

While this paper was in press, we became aware of  two publications which 
deal with the (wave theoretical)  gain of  intensity on the focal line. They are 
Ohanian, H. C. (1974). International Journal o f  Theoretical Physics, 9 ,425 ,  and 
Bliokh, P. V. and Minakov, A. A. (1975). Astrophysics and Space Science, 34, 
L7. 
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